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Abstract
Temperature variability in the SouthwestUS is investigated using skew-normal probability
distribution functions (SNPDFs) fitted to observedwintertime dailymaximum temperature records.
These PDFs vary significantly between years, with important geographical differences in the
relationship between the central tendency and tails, revealing differing linkages betweenweather and
climate. Thewarmest and coldest extremes do not necessarily follow the distribution center. In some
regions one tail of the distribution showsmore variability than does the other. For example, in
California the cold tail ismore variablewhile thewarm tail remains relatively stable, sowarm years are
associatedwith fewer cold extremes but not necessarilymorewarm extremes. The opposite
relationship is seen in theGreat Plains. Changes in temperature PDFs are conditioned by different
phases of ElNiño-LaNiña (ENSO) and the Pacific decadal oscillation (PDO). In the SouthernGreat
Plains, LaNiña and/or negative PDOare associatedwith generally warmer conditions.However, in
terms of extremes, while thewarm tails become thicker and longer, the cool tails are not impacted—
extremely warmdays becomemore frequent but extremely cool days are not less frequent. In contrast,
in coastal California, LaNiña or negative PDObring generally cooler conditions withmore/stronger
cold extremes but thewarm extreme probability is not significantly affected. These results could have
implications for global warming. If a rigid shift of thewhole range occurs, thenwarm years are not
necessarily a good analogue for awarmer climate. If global warming instead brings regional changes
more alignedwith a preferred state of dominant climate variabilitymodes, thenwemay see
asymmetric changes in the tails of local temperature PDFs.

1. Introduction

The seasonal climate of each sub-region in a geogra-
phically complex domain, such as the Southwestern
United States, reflects the interaction of several
weather patterns impacting a given locality. For
example, winter in southern coastal California is
marked by an interplay of onshore (westerly humid
maritime) and offshore (easterly dry warm continen-
tal-desert) flow (Conil andHall 2006) punctuated now
and then by frontal precipitation associated with
midlatitude cyclones and cold outbursts associated

with northerly along-shore flow around transient
anticyclones (Favre andGershunov 2006, 2009). Along
Colorado’s front range, as another example, winter
climate is marked by cold outbreaks associated with
surface anticyclones, Northers, steered southward by
the front range of the Rockies and warm bursts due to
downslope foehn-typewinds known asChinooks.

Each locality gets weather patterns that define its
climate, and local climate variability is driven by their
relative frequency, duration and intensity. A particular
winter’s anomalous climate is defined by the relative
absence or presence of characteristic weather features.
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Some of these patterns are benign, others, especially if
extreme and occurring when the environment is
appropriately primed, can have major impacts on
society including sectors such as health, energy, agri-
culture, and transportation.

Realizing that seasonal mean climate is influenced
by extremeweather and that extremeweather statistics
can sometimes be more seasonably predictable than
mean climate (Gershunov 1998), we adapt a para-
metric framework to summarize the relationships
between local daily weather and seasonal climate. In
practice, the mean has been the orthodox measure of
central tendency to define an anomalously warm or
cold season. However, the mean best reflects central
tendency when the distribution is symmetric (e.g. nor-
mal). In reality, seasonal distributions of daily temper-
ature are not typically symmetric climatologically
(Cavanaugh and Shen 2014) and anomalous seasons
can be characterized by changes in variance or skew as
well as changes in central tendency. In skewed dis-
tributions particularly, extremes and outliers unduly
influence the mean. Therefore, a parametric frame-
work to quantify the shape of the seasonal distribution
and provide a comprehensive perspective on anom-
alous seasons in a variable climate is needed. In part-
icular, we aim to reveal relationships between seasonal
climate and daily weather over space and time.

Simolo et al (2010) fit skew-normal probability
density functions (SN PDFs) to study seasonal trends
in daily temperature over Italy. Below, we fit SN PDFs
to maximum daily temperatures (Tmax) in winter,
resolving the Southwestern US on a 6 km grid, and
examine how the weather–climate relationships

evolve from year-to-year over a data record spanning
62 winters. This methodology aims to quantify local
weather–climate relationships as the climate varies
fromwinter-to-winter over the Southwest.

In what follows, we describe the data and metho-
dology; examine the climate-scale variability in local
weather–climate relationships; quantify the effects of
the two dominant modes of regional climate varia-
bility, which are the known natural sources of climate
predictability, on these relationships in the Southwest;
and conclude with a view towards future climate
research and societal implications.

2.Data

Weuse dailymaximum temperature data from Livneh
et al (2013), which is an observationally-based gridded
product derived fromdaily station data interpolated to
a 1/16° latitude–longitude grid. The source data are
the cooperative observer (coop) summaries of the day
from the National Climatic Data Center (NCDC)
supplemented by first-order automated surface obser-
ving system observations (National Climatic Data
Center 2009). The Livneh product is an update/
extension of the extensively used product of Maurer
et al (2002), where updates include higher spatial
resolution and extended period of analysis. For this
study we analyze the full temperature distribution for
62 DJF winter seasons from December 1949 through
February 2011 over the Southwest US (west of 100°W
and south of 45°N). As a verification measure, we
compared the gridded product with station

Figure 1.Top panels showwintertimemean values of the three SNparameters with location shown in (a), scale shown in (b) and shape
shown in (c). Bottompanels show thewinter-to-winter correlation between the location parameter and othermeasures of daily
temperature variability. Specifically, these showwinter-to-winter correlation between the location parameter and (d) scale parameter,
(e) shape parameter, (f) cold extreme probability, and (g)warm extreme probability. Only correlations significant at the 95% level are
shown as shaded.
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observations at three locations near those shown in
figure 1(c). The year-to-year variability of the first
three statistical moments (mean, variance, and skew-
ness) is represented extremely well by the gridded
product (correlation >0.97 in all comparisons). We
chose maximum temperatures in winter because
(1) winter has the strongest day-to-day weather
variability (not shown) and most predictable climate
variations (Gershunov and Cayan 2003) of any season
and (2) the Southwest has seen less recent warming in
wintertime maximum temperatures, compared to
other seasons (Hoerling et al 2013) and compared to
minimum temperatures, thus allowing a sharper and
more stationary examination of natural climate
variability.

3. Skew-normal (SN)methodology and
southwestern climatology

Daily wintertime temperature distributions over the
Southwest are not symmetric. They exhibit various
degrees and directions of skewness, which are not
represented by the traditional Gaussian (i.e. normal)
distribution (figure S1). Coastal California and the
Sierra Nevada and Cascademountains exhibit positive
skew while over the rest of the Southwest negative
skew is observed. Even locations where distributions
appear normal climatologically may exhibit varying
degrees of seasonal skew from year-to-year. To
account for skewness and identify changes in the shape
of the temperature PDF due to interannual variability,
we model observations using the SN PDF. The SN was
developed as an extension of theGaussian by including
a shape parameter to allow for asymmetry, and where
the Gaussian is a special case of the SN when the shape
parameter is zero (Azzalini 2005). Therefore, the SN
offers more flexibility in fitting skewed data and we
find it particularly useful for analyzing varying climatic
structure reflected in space-time PDF shape differ-
ences. The SN is appropriate for a variable character-
ized by two exponentially-decaying probability tails
reflecting extreme behavior on either side, e.g. seasonal
PDFs of daily temperature, which can be normal or
positively or negatively skewed depending on geo-
graphic location or year. The SN distribution is
represented by three parameters: location, scale and
shape. Location is a measure of central tendency, scale
is a measure of dispersion about the central tendency,
and shape is ameasure of skew. They are closely related
to but not equal to the three first moments: mean,
variance, and skewness, respectively. The correlation
between the location parameter and the mean is 0.52
on average over the Southwest, which reflects the year-
to-year changes in the shape of the pdf. The mean will
be warmer (colder) than the location parameter in
years that are more positively (negatively) skewed
because the mean is heavily influenced by extremes

and outliers. A stronger correlation is observed
between the scale parameter and variance (r=0.77)
and between the shape parameter and skew-
ness (r=0.68).

The location parameter is most closely related to
the mode of the distribution and is a much better esti-
mate of central tendency in skewed distributions than
is the mean, which is pulled in the direction of the
longer tail. In our analyses and discussion we define
warm and cold years by central tendency as estimated
by the location parameter.

In our analysis, SN was found to be superior to
Gaussian at representing daily maximum tempera-
tures (Tmax) over the Southwest.We used the log like-
lihood ratio test (LLRT) applied to 62 winter seasons at
each location. The LLRT is given by D=−2*ln (like-
lihood of null model (Ho)/likelihood of alternative
model (Ha)), where Ho is the Gaussian distribution
andHa is the SN. The null hypothesis representing the
traditional Gaussianmodel was rejected in favor of SN
at over 99% of the locations and winters. A demon-
stration of SN’s ability to represent the temperature
distribution at different locations in the Southwest is
provided in figure S1 of the supplemental materials.
The SN is shown capable of accurately representing
the characteristic temperature distribution including
high and low percentiles. In particular, the observed
90th and 10th percentiles are estimated extremely
well by SN. One important benefit of the SN approach
is the ability to estimate many different metrics
from only three parameters. This would be highly use-
ful for high-resolution climate change studies, for
example, which requires downscaled analyses from
multiple models and scenarios. Although here we
focus only on the 10th and 90th percentile, we could
obtain from only three parameters many applied
metrics such as heating or cooling degree-days, freeze
days, or probability of exceeding any quantile or
threshold value.

Figures 1(a)–(c) display mean values of the three
SN parameters over the Southwest, showing climato-
logicallymost frequent warmwinter temperatures (i.e.
warmest winters) clustered around the southern part
of the domain, as indicated by the location parameter
(figure 1(a)) while the largest variance is observed
along the eastern edge of the region on the lee side (the
Front Range) of the Rockies (scale parameter,
figure 1(b)). The shape parameter shown in figure 1(c)
clearly shows that temperature distributions are
skewed in the Southwest, with most locations exhibit-
ing negative skew, i.e. a proclivity for cold extremes
relative to central tendency. The greatest negative skew
occurs along the Front Range where transient antic-
yclones, the Northers, produce frequent cold snaps
(Colle and Mass 1995). The exception is coastal Cali-
fornia and parts of the Sierra and Cascade Ranges
where a positively skewed distribution is observed.
The greatest positive skew occurs in coastal southern
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California where Santa Ana winds are common in
winter. These katabatic winds originate from cold air
masses in the elevated Great Basin, pushed coastward
by synoptic pressure gradients, accelerating down-
slope, heating adiabatically and drying on their way to
sea level (Hughes andHall 2010). The shape parameter
appears sensitive to these regional weather patterns
associatedwith local temperature extremes. For exam-
ple, the warmest (coldest) 10% of days are about 7 °C
warmer (1 °C colder) than the mode of the distribu-
tion in Oceanside, California (Point B shown in
figure 1(c) and S1), while at LittleMexico, Texas (Point
A), cold extremes tend to deviate more than three-fold
from the mode compared to warm extremes (13 °C
versus 4 °C).

4. Interannual variability and the
temperature PDF

While the fitted SN parameters are independent in
theory, we observe a strong empirical dependence
among the local parameters, which reflects features of
regional weather and climate over the Southwest.
Figure 1(d) shows strong winter-to-winter correlation
between the location and scale parameters showing
that shifts in central tendency tend to be accompanied
by changes in variance. In areas where temperatures
are positively skewed (see figure 1(c)), such as the
California coast and mountains, this relationship
between location and scale is negative meaning that
cool (warm) winters are accompanied by more (less)
variance. Also in this region there is a negative
correlation between location and shape (figure 1(e)),
meaning that warmer winters are less positively
skewed. We observe the opposite relationship in the
rest of the domain where temperatures are negatively
skewed. Here, cool (warm) winters are accompanied
by less (more) variance. The correlation between the
location and shape parameter is again negative, in this
case meaning that warmer winters are more negatively
skewed.

The relationship between the location parameter
and the probability of occurrence of cold or warm
extremes is shown in figures 1(f) and (g), where warm
(cold) extreme probability is defined as the probability
of exceeding (being colder than) the 90th (10th) per-
centile thresholds. For most of the domain (excepting
California), a positive shift in the location parameter is
associated with a higher probability of warm extremes
(figure 1(g)), while the probability of a cold extreme is
not well correlated with a shift in the location para-
meter (figure 1(f)). Therefore warmer winters in these
parts come with a greater occurrence of warm
extremes, but not necessarily with fewer cold
extremes. In California, the opposite is true—cool
winters associate with a higher probability of cold
extremes but not necessarily with fewer warm
extremes. The four-corners region shows a negative

(positive) relationship between the location parameter
and cold (warm) extremes, so this region varies more
symmetrically with warm winters being associated
with more warm extremes and fewer cold extremes
and cool winters with more cold extremes and fewer
warm extremes.

To illustrate the interannual variability of daily
temperatures throughout the Southwest, we per-
formed a rotated principal component (RPC)-based
regionalization using the methodology described in
Gershunov and Guirguis (2012). By this methodology
a grid cell is assigned to the RPC that best describes its
temporal variability, and locations that are similarly
assigned to the same RPC are grouped together into a
‘region’. In this case, we aim to identify climate regions
where the shape of the temperature PDF evolves
(expands and contracts and leans) similarly across
winter seasons. We applied this type of regionalization
three times, once for each of the SN parameters, there-
fore each grid cell was assigned to a location region, a
scale region, and a shape region. We then identified
unique combinations of the three regional identifiers.
This resulted in 139 distinct regions. However, we
found that more than 75% of the spatial domain is
represented by only eight major regions. Figure 2
shows the major climate regions along with the inter-
annual behavior of the temperature PDF denoted by a
representative grid cell within each region. Specifically
the PDFs are shown for the ten warmest and coldest
winters, where ‘warmest’ and ‘coldest’ are determined
by the distribution center, as measured by the fitted
location parameter.

In the four corners and extending south (e.g.
Southern Great Plains, Madrean Sky Islands and
Southern Colorado Plateau), cold winters are closer to
Gaussian, while warm winters are strongly negatively
skewed. Similar behavior is seen for the Northern
Great Plains, Snake River Plateau and Basin and Range
regions, although with a less dramatic shift or more
variability in the cold winter PDF. For the California
Coast and Mountains, the warm winter PDF is closer
to Gaussian while cold winters show strong positive
skew. Figure S2 shows the result of a t-test for unequal
means applied to the tails of each PDF to determine
whether the probability of warm or cold extremes is
significantly different in warm versus cold winters.
Here we see that for the four corners and inter-
mountain regions (Basin and Range andNorthern and
Southern Colorado Plateau regions), the probabilities
of both warm and cold extremes are related to shifts in
central tendency (ttest is significant at the 95% level for
both warm and cold extreme probabilities). For the
California Coast and Mountains region, it is mainly
the cold extreme probability that varies in a warm ver-
sus cold winter. To the north and east of the Rockies, it
is primarily the warm tail of the PDF that is related to
the central tendency.

4

Environ. Res. Lett. 10 (2015) 124023



Figure 2.The eightmajor climate regions and corresponding temperature PDF for a representative point in each region during the ten
warmest and coldest winters. The points corresponding to each PDF are indicated asmarkers on themap.

Figure 3.Panel (a) shows the correlation between theDJFNiño3.4 index and the location parameter, where shading indicates
significance at the 95% level. Points A andBmarked on themap are two points selected for having a strong correlationwith ENSO
(r=0.55 and r=−0.60, respectively). Panels (b)–(d) show the temperature PDF at Point A alongwith box plots showing cold and
warm tail probability during the top ten cases of ElNiño and LaNiña asmeasured from the seasonally-averagedNiño3.4 index.
Shaded boxplots indicate the difference is significant at the 95% level using a ttest for unequalmeans. Themean probability for cold
extremes during ElNiño and LaNiña is 10.0% and 6.4%, respectively; this difference is not statistically significant. Recall that cold and
warm extremes are defined as those occurring in the coldest andwarmest 10%of the PDF, so 10% is the climatologicalmean
probability (shown as dashed line for reference). For warm extremes themean probability during ElNiño and LaNiña is 3.8% and
22.8% respectively. Panels (e)–(g) are the same but for Point B.Here cold extreme probability is 10.2%on average during ElNino and
18.9%during LaNinawhilewarm extremes are not significantly different.
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5. ENSOandPacific decadal
oscillation (PDO)

Figure 3(a) shows the correlation between the
NIÑO3.4 index and the location parameter. ENSO
influence is observed most prominently in the South-
ern Great Plains region that includes Texas, New
Mexico, and parts of Colorado and Arizona. This is
part of a larger pattern of ENSO influence that is
observed over the entire US Gulf Coast (not shown).
Figures 3(b)–(d) show the temperature PDFs and cold
and warm tail probabilities at a representative grid cell
in the Southern Great Plains region. We see a greater
and significant ENSO impact on warm extremes
compared to cold ones. Themean probability of warm
extremes during ElNiñowinters is less than half- while
for La Niña it is more than twice the climatological
expectation (3.8% and 22.8%, respectively).

Figure 3(a) also shows a significant ENSO relation-
ship along the California coast, where El Niño (La

Niña) is associated with warmer (cooler) conditions.
The probability of warm extremes is not significantly
different during El Niño versus La Niña (figures 3(e)–
(g). Cold extreme probability is 10% (the climatologi-
cal expectation) on average during El Niño and 19%
during La Niña winters. This implies that El Niño
exerts little influence over cold extremes while LaNiña
significantly increases their probability of occurrence
along the California coast in winter, reflecting the fact
that La Niña promotes high-amplitude anticyclonic
circulation over the eastern North Pacific associated
with frequent transient anticyclones reaching the Cali-
fornia coast and stimulating cold air advection, as
described by Favre andGershunov (2006).

Since PDO has been shown to exert an even stron-
ger influence on anticyclonic activity along the coast of
California (Favre and Gershunov 2006), we examined
PDO influences on temperature PDFs (figure 4). As
with ENSO, PDO displays significant relationships
with the location parameter in the Southern Great

Figure 4.As infigure 3 but for the PDOusing the index ofMantua et al (1997) averaged seasonally overDJF and showing ten seasons
when thewintertime PDO is eachmost strongly negative andmost strongly positive. Points A andBmarked on themap are two points
selected for having the strongest correlationwith the PDO (r=−0.53 and r=−0.63, respectively). Point C in theCentral Valley,
which also shows a strong correlationwith PDO (r=0.55), is included given the agricultural impacts of cold snaps there.
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Plains and coastal California, but now including the
Central Valley (figure 4(a)). The Southern Great Plains
(figures 4(b)–(d)) exhibit no significant change in cold
tail probability but a strong PDO influence on warm
tails is evident. Mean warm tail probability is three
times higher under a strongly negative PDO (23.2%)
than under a strongly positive PDO (7.4%). In coastal
southern California (figures 4(e)–(g)) PDO primarily
affects cold extremes. Here, cold tail probability ranges
from an average of 0.81% for a strongly positive PDO
to 36.9% under a strongly negative PDO. Because the
distribution is strongly skewed (see figure 4(e)), a small
shift in the location parameter (∼2 °C in this case)
results in a large change in cold tail probability (∼36%
in this case).

While PDO influences the central tendency of the
temperature PDF in the Central Valley (figure 4(a)),
there is no influence seen for probability of extreme
temperatures (figures 4(h)–(j). This is consistent with
the results of section 4 inwhich no significant relation-
ship was found between the location parameter and
warm or cold extremes in the Central Valley (see
figures 1(f) and (g)).

6.Discussion and conclusions

We studied the variability of winter temperature over
the Southwest US using a SN theoretical PDF fitted to
daily maximum temperatures on a 6km grid for each
year during a six and a half decades span. We tested
and found the SN PDF to be superior to the Gaussian
at representing temperature PDFs in the Southwest.
The SN model was particularly effective at modeling
year-to-year changes in the shape of the temperature
PDF due to natural variability and it provided a
framework for analyzing seasonal climate variability in
away that resolves daily weather.We analyzed the PDF
parameters over space and time to investigate how
changes in extreme weather events correspond to
changes in the central tendency.

The relationship between the center and tails of the
temperature distribution exhibits important geo-
graphical differences. In coastal California and moun-
tains we find that cool (warm) winters are
accompanied by more (less) variance. Here, a positive
shift in the distribution center is associated with a
lower probability of cold extremes but the probability
of warm extremes does not vary with the central ten-
dency. Furthermore, shifts in PDFs appear to be sys-
tematically modulated by ENSO and PDO. Along the
California coast during La Niña or negative PDO, gen-
erally cooler conditions have occurred as expressed by
cooler central tendencies and cold extremes; however
warm extreme probability is not significantly affected
by the cool phase of ENSO/PDO. The warm phase of
ENSO/PDO exerts little influence over temperature
extremes, warm or cold, in this region. In California
Santa Ana winds are associated with coastal warm

extremes in winter, and these appear to be equally pre-
valent in warm and cold winters or different phases of
ENSO/PDO as seen by the relative stability of the
warm tail of the PDF. This stability of the warm tail
relative to the cold tail explains the negative relation-
ship observed between the location and scale and
between location and shape in this region.

A nearly opposite pattern is found in the Great
Plains and Snake River Plateau. In this region, cool
winters are accompanied by less variance. Warmer
winters exhibit greater variance, associated with more
and stronger warm extremes but not with fewer cold
extremes. The strongest ENSO/PDO influence is in
the Southern Great Plains where La Niña and negative
PDO are associated with generally warmer conditions.
However, in terms of extremes, only the warm tails are
impacted. So during La Niña or negative PDO, we
identify warmer temperatures overall with more and
stronger warm extremes but not necessarily fewer cold
extremes.

These results suggest that in parts of the Southwest
one tail of the distribution may be inherently more
predictable than the other on seasonal timescales, per-
haps even more than the central tendency. These cli-
mate–weather relationships are partly driven by ENSO
and the PDO. For example, the warm and cold winters
highlighted in figure 2 include positive, negative, and
neutral phases of ENSO/PDO, so these climate for-
cings contribute to, but do not fully explain, the
observed interannual variability. The results shown in
figure 2 do not change appreciably when restricted to
neutral phases of ENSO, for example.

Another question naturally arises: to what extent
can fluctuations in climate be described by rigid PDF
shifts rather than by changes in extreme events,
wherein the tails of the PDF are distorted differently
than the central tendency? The present study indicates
that answering this question requires careful meteor-
ological analyses for specific subregions. For example,
we are not aware of existing work examining the cli-
matic behavior of Northers responsible for cold
extremes in the Great Plains. As another regional
example, along the California coast and coastal valleys
(including the agriculturally vital Central Valley),
anticyclonic transients promoted by negative PDO
and ENSO conditions cause cold extremes (Favre and
Gershunov 2006). Negative PDO and ENSO phases
are also predictably associated with less frequent and
less intense rainfall (Gershunov and Barnett 1998,
Gershunov andCayan 2003).Why these conditions do
not seem to significantly affect warm extremes typi-
cally associated with katabatic winds in coastal Cali-
fornia winter is a topic of current research.

A related question is how temperature PDFs will
vary under climate change. What will be the role of
extreme events in driving future climate change and its
impacts? Will observed relationships between the cen-
ter and tails of the temperature distribution hold up? If
so, then asmean temperatures rise, wemight expect to
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see a greater impact onwarm extreme probability than
on cold extreme probability in the Great Plains, and
with the opposite outcome in California. Or possibly
climate change will affect temperature distributions
differently than we observe under natural variability if
different mechanisms will be involved. We have rea-
son to expect that some mechanisms will be similar as
wintertime climate over the eastern north Pacific is
expected to gradually become more anticyclonic
(Favre and Gershunov 2009), e.g. more reminiscent of
La Niña/PDO- conditions. As the stormtrack retreats
poleward and precipitation frequency decreases
(Polade et al 2014), will cold extremes relative to a new
warmer baseline becomemore frequent inCalifornia?
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